
J Eng Math (2006) 56:289–306
DOI 10.1007/s10665-006-9065-y

ORIGINAL PAPER

Hierarchical spectral basis and Galerkin formulation
using barycentric quadrature grids in triangular elements

L. Grinberg · G. E. Karniadakis

Received: 28 December 2005 / Accepted: 12 July 2006 /
Published online: 11 January 2007
© Springer Science+Business Media B.V. 2007

Abstract Triangular spectral elements with modal shape functions are considered. The use of different
types of nodal sets as quadrature grids for the construction of operators involved in the Galerkin for-
mulation of the Navier–Stokes equations is investigated. Specifically, a Jacobi-polynomial tensor-product
hierarchical basis is employed and the numerical integration, differentiation and projection on a Cartesian
grid, and on two barycentric grids proposed by Blyth and Pozrikidis (2005, IMA J. Appl. Math. 71:153–169)
and Taylor et al. (2005, SIAM J. Numer. Anal, Under review) are examined. A comparison of accuracy,
efficiency and stability for a standard flow problem with exact solution is presented.
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1 Introduction

Spectral-element methods in two-dimensional domains consisting of triangular elements have only been
developed in the last 10 years [1, 2]. They are particularly effective for solving time-dependent partial
differential equations in truly complex-geometry domains. The spectral expansions employed in each tri-
angle to represent the data, solution and geometry can be either of modal or nodal type. Hierarchical modal
expansions can be cast in a tensor-product form if properly formulated, see [3]; they are typically used in
conjunction with Galerkin projections. Nodal expansions are nonhierarchical and are usually employed in
collocation-type methods; computing the proper set of nodes in a triangle has been the subject of several
recent papers; see [4–7].

The present work focuses on modal spectral expansions and the Galerkin formulation for the divergence-
free Navier–Stokes equations [2]. In the past, the discrete system has been formulated by employing Gauss-
type quadratures on a Cartesian grid that is mapped to a standard square domain. Here we attempt, for

L. Grinberg (B)
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
e-mail: lgrinb@dam.brown.edu

G. E. Karniadakis,
e-mail: gk@cfm.brown.edu



290 J Eng Math (2006) 56:289–306

first time, to reformulate the discrete system based on barycentric quadrature grids formed by the nodal
sets of points employed in the aforementioned nodal spectral expansions. Thus, the set of nodes which
are used for interpolation for spectral collocation methods in the triangle will be used here for numerical
integration and differentiation. We are particularly interested in examining the quadrature crimes [8] that
may arise due to the nonlinear (advection) terms in the Navier–Stokes equations. By quadrature crimes we
mean violations associated with quadrature rules for consistent numerical integration and differentiation
of a polynomial function.

In the following, we first define the various quadrature grids and subsequently analyze the three basic
operations, namely integration, differentiation and projection. We then perform a comparison of accuracy
and efficiency for the three different approaches for the Kovasznay flow and analyze the numerical stability
of the corresponding discrete system. We summarize the main findings in the last section.

2 Local coordinate systems and grids

2.1 Cartesian grid on a triangle

The Cartesian grid on a triangular region can be constructed by the mapping:

ξ1 = (1 + η1)(1 − η2)

2
− 1, ξ2 = η2.

In the standard quadrilateral element the coordinates η1, η2 are bounded by constant limits, i.e.,

Q2 = (η1, η2)| − 1 ≤ η1, η2 ≤ 1,

as shown in Fig. 1.
The two-dimensional Cartesian grid on Q2 is constructed by superposition of two one-dimensional

ones, namely η1i , η2j , i = 1, 2, . . . , Q1, j = 1, 2, . . . , Q2. Now consider a standard triangular element in the
Cartesian coordinate system (ξ1, ξ2)

T2 = (ξ1, ξ2)| − 1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0,

as shown in Fig. 1. Then, the new coordinate system on a triangular element is obtained by mapping of the
standard coordinate system by the transformation

η1 = 2
1 + ξ1

1 − ξ2
− 1, η2 = ξ2. (1)

The transformation (1) defines the collapsed coordinate system. It allows efficient numerical integration
and differentiation. The collapsed Cartesian grid was successfully implemented in spectral/hp element
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Fig. 1 Cartesian (ξ1, ξ2) and collapsed Cartesian (η1, η2) coordinate systems
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Fig. 2 Triangular elements and barycentric coordinate system

methods and the Navier–Stokes solver Nektar [1]. The main drawback of such a grid is the nonsymmetrical
distribution of quadrature points with respect to vertices of the triangular element. In the rest of the paper
we will use the notation CCG for the collapsed Cartesian grid.

2.2 Barycentric grids on a triangle

The barycentric coordinate system on a triangular region is defined by three nonindependent coordinates
L1, L2, L3 as illustrated in Fig. 2a.

The coordinates of a grid point P(L1i , L2i , L3i) are computed as a ratio of areas of triangles ABP, BCP,
CAP (Fig. 2b) to the area of an element ABC, i.e.,

Li = Ai

A
, i = 1, 2, 3.

In the present study we consider two types of barycentric grids. The first was developed by Blyth and
Pozrikidis [7], and we will refer to this grid as a barycentric grid of a type A (BGA); a two-dimensional
grid is generated from a one-dimensional master grid. Here we employ the Gauss grid in a nontensorial
coordinate system, whereas in [7] the Gauss–Lobatto grid was used. The total number of nodal points over
a triangular element is N = m(m + 1)/2, where m is the number of grid points in one dimension. The
highest order of polynomials, P, that can be exactly integrated and differentiated is limited by P = m − 1.
The main advantage of the BGA is that we obtain a symmetric distribution of quadrature points with
respect to the vertices of a triangular element.

The second type of barycentric grid was developed by Taylor et al. [6] and we will refer to this grid as a
barycentric grid of a type B (BGB). The number of quadrature points, N, is defined by the order of cardinal
functions—polynomials of order P—as N = (P + 1)(P + 2)/2. The distribution of quadrature points over a
triangular element and their associated weights are optimized in order to obtain exact integration of poly-
nomials of order higher than P. The distribution of quadrature points is not always symmetrical; however,
even in the case of asymmetrical distribution, there is no clustering of quadrature points as in the case of
the collapsed Cartesian grid. All quadrature points computed with the cardinal function of degree up to
14 are located inside the triangle and have positive weights. Integration on the BGB grid of polynomials
up to order 25 is exact.

We emphasize that the BGA grid was constructed for interpolation purposes, while the BGB grid was
optimized for integration.

Another set of symmetrical nodes, optimized for integration on a triangular element was suggested by
Wandzura and Xiao [9]. The highest order of polynomial function that can be exactly integrated using this
set is limited by P = 30. It was argued in [6] that integration on BGB is generally less expensive than
integration using the Wandzura and Xiao grid. The Vandermonde matrix constructed from modal bases
defined on a triangular element and Wandzura and Xiao points is not a square matrix, which provides
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Fig. 3 Quadrature grids: Left—CCG; Middle—BGA; Right—BGB. The total number of quadrature points, N, is defined as:
N = (P + 1)2 for CCG, N = (P + 1)(P + 2)/2 for BGA and BGB; P = 6

additional complexity in numerical differentiation. In the current work we have not studied the Wandzura
and Xiao points.

In Fig. 3 we show typical distributions of Cartesian and barycentric grid points over an equilateral
triangle.

3 Integration and differentiation

In this section we review the methods for numerical integration and differentiation using the collapsed
Cartesian and barycentric grids. We compare the computational cost of these basic numerical operations
with respect to different computational grids.

3.1 Numerical integration

The exact integration of a function u on triangular region T2

I =
∫

T2
u dA

can be approximated by numerical integration, i.e.,

I =
N∑

i=1

ωiui + R,

where ωi is the ith quadrature weight, ui is the value of a function u computed at a point i and R is
the quadrature error. Different types of grids defined on a triangular region lead to different integration
techniques.

3.1.1 Integration on the collapsed Cartesian grid

The exact integration of a function u on the standard triangular region using the collapsed coordinate
system (η1, η2) is expressed as

I =
∫

T2
u(ξ1, ξ2)dξ1 dξ2 =

∫ 1

−1

∫ −ξ2

−1
u(ξ1, ξ2)dξ1dξ2 =

∫ 1

−1

∫ 1

−1
u(η1, η2)J dη1 dη2, (2)

where J is the Jacobian of the transformation (1)

J =
∣∣∣∣ ∂(ξ1, ξ2)

∂(η1, η2)

∣∣∣∣ . (3)
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The numerical counterpart of the last term in (2) is

I =
i=Q1∑
i=1

ω1i

⎡
⎣

j=Q2∑
j=1

ω2j u(η1i , η2j)J(η1i , η2j)

⎤
⎦ + R. (4)

It is efficient to use Gauss quadrature points and weights for numerical integration. The Jacobian, J, is
usually included into the weights ω1,ω2. In the case where u is a polynomial of degree P1(P2) in ξ1(ξ2),
we need only Q1 = (P1 + 1)/2, Q2 = (P2 + 1)/2 Gauss quadrature points to perform the exact numerical
integration. Thus, the precise cost of numerical integration of a polynomial of order P (here and thereafter
we assume that P1 = P2 = P and Q1 = Q2 = Q) on the collapsed-coordinate system is (3Q2 + Q)
multiplications and summations, with function evaluations at Q2 quadrature points.

3.1.2 Integration on the barycentric grids

The numerical integration on a barycentric grid over a triangular region with area A is given by

I = 2A
N∑

i=1

ωiu(L1i , L2i)+ R′

with the weights, ωi, for BGA computed from

Vω =
∫
� dA,

where � is a vector formed from the polynomial basis φ(m, n) ∈ P
P = span{ξn

1 ξ
m
2 , m + n ≤ P},

and V is the corresponding Vandermonde matrix constructed from φ(m, n).
For BGB the procedure of computing the location of quadrature points and weights is more complicated;

a detailed explanation can be found in [6].
The computational cost of the exact integration of a polynomial of degree P on BGA is (P + 1)(P + 2)

summations and multiplications, while the cost of function evaluations scales as (P + 1)(P + 2)/2. On the
other hand, for the exactly same computational cost we can integrate polynomials of degree higher than P
using BGB. We summarize this section by comparing the number of quadrature points and the number of
numerical operations for integration of polynomial of degree P. In Fig. 4a, b we plot the results for the three
types of quadrature. We assume that the computational cost for function evaluation at each quadrature
point is one unit. Clearly, the quadrature grid BGB is more efficient than BGA.

3.2 Numerical differentiation

Differentiation on Cartesian and barycentric coordinate systems in a triangular element is based on chain
rule. In the case of CCG we apply the chain rule twice: first due to transformation from a global Cartesian
coordinate system (x, y) to a local (ξ1, ξ2), and then due to transformation from a local Cartesian system
to a collapsed one (η1, η2). In the case of barycentric grid we have only one transformation, that is, from a
global coordinate system to a local one.

3.2.1 Differentiation on collapsed Cartesian grid

The mapping from a local coordinate to a global coordinate system is defined by

xi = xA
i

−ξ1 − ξ2

2
+ xB

i
1 + ξ1

2
+ xC

i
1 + ξ2

2
,
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here x1 = x, x2 = y and xA
i , xB

i , xC
i are coordinates of element vertices. Thus, differentiation on the CCG is

defined by⎡
⎢⎢⎢⎣

∂

∂x

∂

∂y

⎤
⎥⎥⎥⎦ = 2

A

⎡
⎢⎢⎢⎣

∂y
∂ξ2

− ∂y
∂ξ1

− ∂x
∂ξ2

∂x
∂ξ1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

∂

∂ξ1

∂
∂ξ2

⎤
⎥⎥⎦ , (5)

where the partial derivatives in ξi are computed from:⎡
⎢⎢⎢⎣

∂

∂ξ1

∂

∂ξ2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2
1 − η2

∂

∂η1

1 + η1

1 − η2

∂

∂η1
+ ∂

∂η2

⎤
⎥⎥⎥⎦ . (6)

The derivatives of u(η1, η2) may also be computed using the collocation differentiation matrix Dηi as

u(η1, η2)ηi = Dηi u(η1, η2).

In order to differentiate a function from VP exactly (here and thereafter VP denotes a polynomial space
of order P), Q = P + 1 quadrature points are required. Thus, the computational cost of numerical differ-
entiation on CCG is proportional to the cost of matrix-matrix multiplication and scales as (P + 1)3.

3.2.2 Differentiation on the barycentric grids

The numerical differentiation on BGA and BGB is similar. We can represent any function as

u(ξ1, ξ2) =
K∑

k=1

ûkφk(ξ1, ξ2), (7)

where K = (P + 1)(P + 2)/2, ûk is the amplitude of polynomial basis φk, k = k(m, n) is an index of
polynomial basis and m, n are polynomial order of the basis with respect to two coordinates. For more
details see [10]. From (7) we express the derivatives of u with respect to each orthogonal direction ξ1, ξ2 as

∂

∂ξi
u(ξ1, ξ2) =

K∑
k=1

ûk
∂

∂ξi
φk(m, n, ξ1, ξ2), i = 1, 2. (8)
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We may rewrite expansions (7) and (8) in compact form as:

u = Vû, uξi = Vξi û, i = 1, 2.

Thus, the derivatives of a function u at quadrature points ξ1i , ξ2i are computed from:

uξi = [VξiV
−1]u, i = 1, 2. (9)

The Vandermonde matrix V is constructed on N quadrature points. To perform exact differentiation of a
polynomial function of order up to P we need N = (P + 1)(P + 2)/2 quadrature points, i.e., the same as the
number of polynomials in the basis. The transformation from barycentric to local Cartesian coordinates
−1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0 is given by

ξ1 = −L1 + L2 − L3 = 2L2 − 1, ξ2 = −L1 − L2 + L3 = −1 + 2L3. (10)

The derivatives of a function u(x, y) are expressed as linear combination of derivatives of the function in
the local coordinate system (ξ1, ξ2) using chain rule (5).

The computational cost of numerical differentiation on the barycentric grid scales as N2 = (P + 1)2

(P + 2)2/4.

3.2.3 Projection

The projection operator from modal to physical space is defined by

u(ξ1i , ξ2j) =
K∑

k=1

ûkφk(ξ1i , ξ2j). (11)

Thus, the computational cost of computing u(ξ1i , ξ2j) at a single quadrature point does not depend on the
type of grid, but the overall cost depends on the number of quadrature points. This implies that using the
barycentric grid with N = (P + 1)(P + 2)/2 quadrature points is almost half the cost of using CCG with
N = (P + 1)2 quadrature points.

The projection from physical to modal space is performed in three steps. First, we compute the mass
matrix M; second, we integrate the function with respect to the test functions; third, we solve the algebraic
system Mû = f, where the unknowns û are amplitudes of the expansion basis. The efficiency of the first and
the second steps depends on the effectiveness of the numerical integration. However, we note that CCG
is based on a tensor-product construction. For tensor-product bases we can employ the sum-factorization
to effectively reduce the computational cost. On barycentric grids the sum-factorization is not possible
[1]. We also note that the second step is repeated (P + 1)(P + 2)/2 times equal to the number of modes
in a polynomial expansion. In Fig. 4b we demonstrate that the choice of BGB leads to the most efficient
integration and thus the most efficient projection.

4 Application to a Navier–Stokes solver

This section consists of three parts. First, we provide an overview of the model problem and numerical
scheme. In the second part we analyze the numerical efficiency of a Navier–Stokes solver where different
quadrature grids are employed. In the third part we analyze the effect of quadrature grids on the temporal
stability of the Navier–Stokes solver.

4.1 Kovasznay flow and numerical scheme

The aforementioned three types of quadrature grids were employed in all operations in a 2D spec-
tral/hp-element code for incompressible Navier–Stokes equations. As a prototype problem we consider
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the Kovasznay flow, a steady laminar flow behind a two-dimensional grid. The exact solution is given by

u = 1 − eλx cos(2πy), v = λ

2π
eλx sin(2πy), p = p0 − 1

2
e2λx, (12)

where λ = Re
2 −

√
Re2

4 + 4π2, Re being the Reynolds number. The numerical solution is obtained by
solving the incompressible Navier–Stokes (NS) equations in terms of the primitive variables, i.e.,
∂v
∂t

+ v · ∇v = −∇p + 1
Re

∇2v, ∇ · v = 0 (13)

with Dirichlet boundary condition for v = [u v]T, specified by the exact solution (12). Following the stan-
dard spectral/hp element approach, the unknown functions, f = [u, v, p] (including the pressure; see [1,
Chapter 8]) are approximated by P-order polynomial expansions:

fP =
K∑

k=1

f̂kφk(ξ1, ξ2), (14)

where φ ∈ VP. On triangular elements K = (P + 1)(P + 2)/2.
The NS equations were solved using a splitting scheme as follows:

v
 − vn

�t
= −[NL]n+1/2, (15)

vn+1 − v


�t
= 1

Re
∇2vn+1 − ∇pn+1, (16)

where pn+1 is computed from

∇2pn+1 = (�t)−1∇ · v
, (17)

and NL in (15) represents the nonlinear terms. The nonlinear term can be formulated in conservative, rota-
tional, skew-symmetric and convective forms. We performed numerical experiments using all formulations.
In the paper we concentrate primarily on the conservative (18) and convective (19) forms.

NLx = ∂(u)2

∂x
+ ∂uv
∂y

, NLy = ∂uv
∂x

+ ∂(v)2

∂y
. (18)

NLx = u
∂u
∂x

+ v
∂u
∂y

, NLy = u
∂v
∂x

+ v
∂v
∂y

. (19)

The weak form of NS equations is obtained by multiplication of (13) by a test function ψk and integra-
tion over domain ; according to the Bubnov–Galerkin method ψk = φk. The weak form of linear terms
requires integration of polynomials of from V2P, while for the nonlinear terms the integrated polynomials
are in V3P−1. The calculation of NL involves several steps: On the first step, values of u are computed on N
quadrature points by projection from modal to physical space. On the second step, the derivatives operator
is applied to obtain NLx, NLy. Finally, NLx and NLy are integrated with respect to the test functions. We
note that values of NLx, NLy in physical space are also used for the evaluation of the right-hand side for
the pressure equation, (17). The divergence of the provisional field v
 is, first, computed by applying the
derivative operator on v
 and, second, by integration of ∇ · v
 with respect to the test functions.

A consistent implementation of the weak form of the nonlinear terms implies that the number of quadra-
ture points should satisfy the rules for exact numerical integration and exact differentiation of polynomials
from V3P−1 and V2P, respectively. Our numerical experiments were divided into three categories:

(a) Number of quadrature points is sufficient for exact integration of polynomials from V2P.
(b) Number of quadrature points is sufficient for exact integration of polynomials from V3P−1.
(c) Number of quadrature points is sufficient for exact integration of polynomials from V3P−1 and exact

differentiation of polynomials from V2P.
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Fig. 5 Triangular
elements and domain for
the solution of the
Kovasznay problem

–1 –0.5 0 0.5 1 1.5 2 2.5 3 3.5
–1

–0.5

0

0.5

1

1.5

2

We will refer to the method in case (a) as inconsistent numerical integration; in case (b) as consistent
numerical integration; and case (c) as fully consistent numerical integration and differentiation.

The computational domain was decomposed into 24 triangular elements, as shown in Fig. 5. For each
simulation we started from the same initial field, used the same solver for the Helmholtz and Poisson
equations (involved in the second and third substeps of the splitting scheme) and the same time stepping
scheme. The size of the timestep was fixed to �t = 10−4. For the nonlinear terms we used the second-
order Adams–Bashforth (AB2) time stepping formula; for the viscous terms we used an Euler Backwards
scheme. To estimate the numerical efficiency, we monitored the CPU time required to obtain a solution at
T = 6 and the L2-error of a solution at T = 1, 2, 3, 4, 5, 6 (steady state is achieved after T = 4) Also, P = 6
and P = 8 were used for spectral polynomial order.

4.2 Numerical efficiency

Let PI denote the highest order of polynomial function that can be exactly integrated on a given set of
quadrature points and Pd the highest order of polynomial function that can be exactly differentiated. We
also denote by N the total number of quadrature points. For each type of grid the number of quadrature
points is chosen according to the following principles.

Collapsed Cartesian grid (CCG) The number of quadrature points is set according to rules for one-
dimensional integration. Using Q Gauss quadrature points per direction, we can integrate exactly polyno-
mials of order P ≤ 2Q − 1 = PI and differentiate exactly polynomials of order P ≤ Q − 1 = Pd. The total
number of grid points on a triangular element is N = Q2.

Barycentric grid of type A (BGA) The highest order of polynomial that can be exactly integrated and
differentiated is defined by the number of grid points of the one-dimensional master grid from which the
two-dimensional one is constructed. In order to have exact numerical differentiation and integration we
need m = Pd + 1 = PI + 1 grid points in the one-dimensional grid. Thus, the total number of grid points
in the triangular region is defined by N = (Pd + 1)(Pd + 2)/2.

Barycentric grid of type B (BGB) The number of quadrature points for consistent differentiation is
defined similarly as for BGA, i.e., N = (Pd + 1)(Pd + 2)/2. However, the highest order of polynomial that
can be exactly integrated using the same number of grid points is greater than Pd. Appropriate values of
N for exact integration of polynomial function in VPI are provided in Table 7.1 of [6].

We recall that BGB was optimized for numerical integration, while BGA was not; moreover some of
the weights, computed on BGA, for integration of polynomials with P > 6, are negative.
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In handling the nonlinear terms it is convenient to perform the basic numerical operations on the same
grid, that is we use the same points for integration and differentiation. In nonlinear problems we have that
PI > Pd, which implies that it is not always possible to have N grid points and satisfy exactly the rules for
accurate integration and differentiation without paying an extra cost by performing over-integration or
differentiation (in a super-collocation fashion); see [11]. Also, in the discretization of the nonlinear terms
with vP ∈ VP we may specify the number of quadrature points for each type of grid in order to have
(a) exact integration of the weak linear advection operator; (b) exact integration of the weak nonlinear
advection operator; and (c) exact integration and differentiation of the weak nonlinear advection operator.

In Table 1 we summarize the values of N, PI and Pd given the above considerations for the nonlinear
problem with vP ∈ V6. The number of quadrature points on each grid was chosen such that we have:
(a) inconsistent numerical integration, (b) consistent numerical integration, and (c) consistent numerical
integration and differentiation. In our problem, the order of polynomial function that should be integrated
is higher than the order for differentiation, thus consistent integration on BGA leads to consistent differ-
entiation as well. For this reason the second and the third rows that correspond to BGA in Table 1 (also in
Table 2) are the same. We note that, for this particular problem, the highest order of a polynomial function
to be integrated is 17 and the highest order of polynomial function to be differentiated is 12, since we use
the conservative formulation for the nonlinear terms.

The Kovasznay flow problem was solved on the three different grids, with the number of grid points
specified according to Table 1. In Fig. 6 we present the L2-error as a function of time. The left plot illustrates
the behavior of the error of the solution when the number of quadrature points is sufficient to integrate a
weak linear advection operator only. We note that for the collapsed Cartesian grid as well as for barycentric
grid of type B this number of quadrature points is insufficient for exact numerical differentiation. On the
other hand, for BGA the numerical differentiation is exact. The dashed line depicts the fully consistent
case, i.e., when we have consistency in both integration and differentiation. The right plot shows the L2-
error for tests where the number of quadrature points is sufficient for consistent numerical integration.
We observe that in terms of accuracy the choice of barycentric grid of type A is advantageous for the case
of inconsistent numerical integration. Another observation is that insufficient resolution for numerical
differentiation alone does not affect the overall accuracy, as shown in the right plot.

We performed the same test with rotational and skew-symmetric forms of the nonlinear term. The results
were very similar to the results obtained with conservative formulation of the NL. The drop of accuracy
was observed when both numerical integration and differentiation suffered from under-resolution.

A different situation was observed when the convective form of NL was used; using the convective form
always leads to exact numerical differentiation. In Fig. 7 we present the numerical error of the solution
obtained using the convective form and inconsistent numerical integration. We see no drop of accuracy
due to numerical under-integration.

The Kovasznay-flow problem was also solved with higher accuracy, corresponding to vP ∈ V8. In Table
2 we provide a summary of the number of quadrature points and PI , Pd for each simulation. We note that,
in case of vP ∈ V8, the highest order of polynomial function to be integrated is 23, while the highest order
of polynomial function to be differentiated is 16. For BGB the maximum number of quadrature points is
120 which corresponds to a cardinal function of a degree 14; for this reason max(Pd) = 14. The results of

Table 1 Number of quadrature points for (a) inconsistent numerical integration, (b) consistent numerical integration, and
(c) consistent numerical integration and differentiation of a weak nonlinear operator; vP ∈ V6

Collapsed Cartesian Barycentric grid A Barycentric grid B

N PI Pd N PI Pd N PI Pd

(a) 49 13 6 91 12 12 36 13 7
(b) 81 17 8 171 17 17 66 18 10
(c) 169 25 12 171 17 17 120 21 12
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convergence of the error in the L2 norm are presented in Fig. 8; we observe similar behavior as in the case
with vP ∈ V6.

In Figs. 9 and 10 we show the dependence of the L2-error for the different methods with respect to
CPU time. Here the CPU time is measured in seconds and reflects the elapsed time from the beginning of
simulation (first time step, t = 0) to the intermediate time (t = 1, 2, 3, 4, 5) and final time T = 6. The CPU
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Fig. 6 L2-error versus time for the collapsed Cartesian grid (CCG), barycentric grid of type A (BGA) and B (BGB) with
(a) inconsistent numerical integration, and (b) exact numerical integration. The dashed line (FC) depicts the fully consistent
case; vP ∈ V6; conservative formulation of the nonlinaer term
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inconsistent numerical integration and convective formulation of the nonlinear term; (a) vP ∈ V6; (b) vP ∈ V8 The dashed
line (FC) depicts the fully consistent case
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Table 2 Number of quadrature points for (a) inconsistent numerical integration, (b) consistent numerical integration, and
(c) consistent numerical integration and differentiation of a weak nonlinear operator; vP ∈ V8

Collapsed Cartesian Barycentric grid A Barycentric grid B

N PI Pd N PI Pd N PI Pd

(a) 81 17 8 153 16 16 55 16 9
(b) 144 23 11 300 23 23 105 23 13
(c) 289 33 16 300 23 23 120 120 14

1 2 3 4 5 6
t

a)

CCG
BGA
BGB
FC

1 2 3 4 5 6
t

b)

CCG
BGA
BGB
FC

10–6

10–5

10–4

10–3

10–2

10–1

100

10–6

10–5

10–4

10–3

10–2

10–1

100

L 2– 
er

ro
r
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(a) inconsistent numerical integration, and (b) exact numerical integration. The dashed line (FC) depicts the fully consistent
case; vP ∈ V8
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grid of a type A (BGA) and B (BGB); inconsistent numerical integration of nonlinear term—solid line (a) and consistent
numerical integration—dashed line (b); vP ∈ V6. The computations were performed on an Intel(R) Xeon(TM) CPU 3·06 GHz
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Fig. 10 L2 − error versus CPU time: numerical solution of Kovasznay problem on collapsed Cartesian grid (CCG), bary-
centric grid of a type A (BGA) and B (BGB); inconsistent numerical integration of nonlinear term—solid line (a) and
consistent numerical integration—dashed line (b); vP ∈ V8. The computations were performed on an Intel(R) Xeon(TM)
CPU 3·06 GHz and 2GB of memory

time does not reflect the time consumed for construction of the linear operators, which is done only once
at the beginning of the simulation. We recall that for all tests we use the same numerical scheme, the same
initial condition, and the same size of a time step. However, the nonlinear term is computed using different
grids, which results in distinct performance of the solver. In this test, the sum-factorization technique for
numerical integration on CCG (4) was not implemented. For solutions obtained on the Cartesian grid and
on the barycentric grid of type B we present the CPU time for (a) inconsistent numerical integration and (b)
consistent numerical integration. For solution on barycentric grid of a type A we show only one case, with
the number of quadrature points consistent for differentiation but not sufficient for consistent integration
of the nonlinear terms. The results in both figures show that, at least for the Kovasznay flow, we consider
here the collapsed Cartesian grid is the most efficient, even without implementing the sum-factorization
technique.

4.3 Stability

In this section we show that the stability criteria are practically independent of the grid type where the basic
numerical operations are performed. However, when the size of timestep approaches its critical value, the
BGA grid exhibits some advantages.

The Kovasznay problem was solved again using different spatial accuracy and variable timestep. The
conservative formulation of the nonlinear term was employed. The critical timestep for stability (�tstable)
was numerically evaluated; in Table 3 we summarize the results in terms of the L2-error in the numerical
solution at T = 6 (steady state), obtained using different grids. In the second column we show the numerical
error obtained using �tstable; one can see that the numerical error is not affected by the choice of grid and
is solely determined by the order of polynomial expansion, P, as expected. In the third column we present
results obtained using marginally stable �t; here the choice of a grid does affect the results. Columns four
and five present results of simulation with slightly large size of �t.
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The relation between P and the critical timestep,�tstable, was obtained heuristically in the following way:
for fixed order of polynomial expansion, P, the timestep was continuously increased until an instability
in the numerical solution appeared; the instability was characterized by a sudden loss of accuracy. Then,
�tstable was defined as the maximum timestep for which the stable solution was obtained. The test was
performed for P = 5, 6, 7, 8, 9 and was repeated for Adams–Bashforth time-integration of the nonlinear
terms with first-, second- and third-order (AB1, AB2 and AB3, respectively). The dependence of �tstable
on P for the three Adams–Bashforth methods is presented in Fig. 11. It is clear that AB1 (Euler forward)
method with�tstable ∝ P−1·7 is the most stable (this will become clear from analyzing the eigenspectra; see
below). Second, we observe that the stability region for barycentric grids and collapsed Cartesian grid is not
exactly the same. This is due to the different quadrature crimes we commit using inconsistent integration
or differentiation. In Table 4 we compare the L2-error of a solution at T = 6 with consistent integration
and unresolved/resolved differentiation (CCG) to the error of a solution with inconsistent integration but
consistent differentiation (BGA); the improvement in L2-error is clear.

The estimate of the numerical error in computing the nonlinear advection operator on a sparse grid can
be obtained from the following. First, we project the exact solution of Kovasznay problem onto the space
spanned by the basis functions. Second, we use consistent numerical differentiation to compute NLx, NLy

(18). Third, we compute exactly the inner product of polynomial NLx, NLy terms with a test function, φk:

Iexact = (NL,φk).

These three steps lead to an accurate projection of the nonlinear terms onto a modal space. Next, we
compute the approximate inner product Iε . The nonlinear terms are evaluated and projected using the
CCG, BGA and BGB grids with consistent integration on the first two and consistent differentiation on

Table 3 L2-error for different timesteps

L2-error L2-error L2-error L2-error

P = 5
�t = 2·500 E−3 �t = 2·550 E−3 �t = 2·600 E−3 �t = 2·800 E−3

CCG 5E−3 4E−2 1E+0 unstable
BGA 5E−3 5E−3 unstable unstable
BGB 5E−3 1E−2 1E+0 unstable
P = 6

�t = 1·730 E−3 �t = 1·740 E−3 �t = 1·750 E−3 �t = 2·000 E−3
CCG 4E−4 2E−1 5E−1 2E+0
BGA 3E−4 3E−4 unstable unstable
BGB 4E−4 4E−4 6E−3 unstable
P = 7

�t = 1·270 E−3 �t = 1·275 E−3 �t = 1·280 E−3 �t = 1·290 E−3
CCG 4E−5 3E−1 5E−1 unstable
BGA 4E−5 4E−2 5E−1 unstable
BGB 4E−5 4E−2 3E−1 unstable
P = 8

�t = 9·735 E−4 �t = 9·749 E−4 �t = 10·00 E−4 �t = 12·00 E−4
CCG 5E−6 2E−3 1E+0 unstable
BGA 4E−6 5E−6 1E+0 unstable
BGB 4E−6 6E−5 1E+0 5E+1
P = 9

�t = 7·600 E−4 �t = 7·790 E−4 �t = 8·000 E−4 �t = 8·200 E−3
CCG 3E−7 3E−4 1E+0 unstable
BGA 3E−7 4E−7 1E+0 unstable
BGB 3E−7 9E−5 2E+0 1E+1

The number of grid points for CCG and BGB satisfies consistent numerical integration only but for BGA it satisfies consistent
numerical differentiation only. vP ∈ V i, i = 5, 6, 7, 8. For vP ∈ V9 the number of quadrature points for BGB is sufficient for
exact numerical integration of polynomials of order up to 25
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Fig. 11 Stable�tstable versus P for solution of the Kovasznay problem. The nonlinear terms, fomulated in conservative form,
were computed with Adams–Bashforth method of order 1,2 and 3

Table 4 L2-error in Kovasznay solution computed on CCG and BGA

a) Pd(CCG)< Pd(BGA) b) Pd(CCG)= Pd(BGA)

P = 6, �t = 1·740 E−3
CCG 2E−1 3E−4
BGA 3E−4 3E−4
P = 8, �t = 9·749 E−4
CCG 2E−3 6E−6
BGA 5E−6 5E−6
P = 9, �t = 7·790 E−4
CCG 3E−4 4E−7
BGA 4E−7 4E−7

The number of quadrature points for BGA satisfies consistent numerical differentiation only. The number of quadrature points
for CCG satisfies consistent numerical integration and (a) unresolved numerical differentiation (Pd(CCG)<Pd(BGA)), (b)
resolved numerical differentiation (Pd(CCG) = Pd(BGA)). vP ∈ V i, i = 6, 8, 9

the last one. We define the numerical error in evaluating the nonlinear advection operator as

αNL = MAXj, k(Iexact − Iε), j = 1, .., Nel, k = 1, . . . , K

where Nel is a number of elements in the computational domain and K = (P + 1)(P + 2)/2 is the number
of test functions. In Table 5 we present the values of αNL; note that unresolved differentiation on CCG
grid leads to the highest error.

In the semi-implicit time-stepping we have employed, the stability of the three schemes is dictated by
the eigenspectra of the advection operator and, of course, the type of the time-stepping method. Let us
denote the advection operator by A and its eigenspectra by�(A). Then, the perturbed advection operator,
A +�A, has �(A +�A) = �ε(A) eigenspectra, which is also known as epsilon-pseudospectra of A [12].
The definition of pseudospectra of a matrix A is given by

�ε(A) = z ∈ C : ||(A − zI)v|| ≤ ε
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Table 5 Error in the non-
linear advection operator;
vP ∈ V8

N αNL

CCG 144 8E−8
BGA 300 8E−10
BGB 105 5E−9

for some v ∈ Cn with ||v|| = 1. If some of the eigenvalues of A are located in the vicinity of the region of
instability, then the epsilon-pseudo-eigenvalues might be located inside the unstable region. The distance
between the eigenvalues and the epsilon-pseudo-eigenvalues depends on ||�A||. In our case, ||�A|| is a
result of inconsistent numerical evaluation of the advection operator.

In order to analyze the eigenspectrum of the advection operator we simplify the problem by solving the
Navier–Stokes equations on a computational domain with two elements as shown in Fig. 12. We use AB1
method for the nonlinear terms. By gradual increase of �t we experimentally obtain the critical timestep,
�tstable, for which a stable solution is obtained. Then, we assemble the condensed global linear advection
operator AG = M−1L, where

L =
(

U
∂u
∂x

+ V
∂u
∂y

,φ
)

,

and the scalar coefficients U and V denote the maximum values of the corresponding velocity field, vP;
M is a mass matrix. The local, elemental, advection operator is extracted from the global one and its
eigenspectra is analyzed. We choose the element where U and V have their largest values. In Fig. 13 we
present the scaled (by �tstable) eigenspectra of the linearized local advection operator. The dashed line
depicts the edge of a stability region for the AB1 time-stepping scheme. We note that the values of�tstable
were obtained from the solution of the nonlinear problem, with the advection terms computed with O(�t).
For all numerical experiments the scaled eigenvalues fit exactly the region of stability, which suggests that
we can analyze stability of the nonlinear problem using properly scaled eigensectra which correspond to
the linear problem.

In Fig. 14 we present the pseudospectra of the linearized local advection operator A. Note that one
of the eigenvalues is located in the neighborhood of the unstable region. The eigenspectra of the linear
advection operator do not depend on the type of grid, since the number of grid points suffices to compute
the operator exactly. However, the “effective" eigenspectra of the nonlinear operator is grid dependent

Fig. 12 Two-element
computational domain for
solution of Kovasznay
problem
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Fig. 13 Eigenspectrum of linearized local advection operator. vP ∈ V i, i = 6, 7, 8

due to different quadrature crimes we commit. The larger the numerical error associated with incorrect
integration and differentiation, the larger the distance between eigenvalues of the perturbed operator and
those of the exact operator. As seen in Table 5, the error in computing the nonlinear terms on the BGA
grid is smaller than the error of the nonlinear terms computed on the CCG grid. The nonlinear advection
operator is computed every timestep, which introduces a random shift to the eigenvalues of the perturbed
operator from those of the exact one. It appears that the BGA grid minimizes these shifts and provides
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Fig. 14 Pseudospectra of a linear local advection operator, A, computed on a triangular element: dots—represent the eigen-
values of A, solid lines—contours of Log10 of epsilon-pseudo-spectra for ε = 10−4, 10−3·5, 10−3 , dash line—edge of stability
region; vP ∈ V8
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a more accurate bound on �t�(A + �A). Thus, the transition from a stable region to an unstable one
depends on �t and less on �A as in the case of CCG.

5 Conclusions

We have employed in this paper barycentric grids, typically used in collocation spectral methods on a trian-
gle, to perform numerical integration, differentiation and projection in the Galerkin spectral/hp element
method. We have examined the individual operations separately as well as in the context of solving the
Navier–Stokes equations for incompressible flows. The main findings of this work are the following:

– All three quadrature grids investigated can be used in constructing the discrete operators.
– The choice of the grid, (e.g., symmetric versus nonsymmetric) does not affect the accuracy of the numer-

ical solution as long as a sufficient number of quadrature points is used.
– BGB leads to high efficiency, but the limited number of grid points defined for multivariate quadrature

restricts the highest order of polynomial expansion.
– In the solution of nonlinear problems with Galerkin projection the loss of accuracy can be a result

of underresolution in both numerical integration and differentiation. However, in the solution of the
model equation chosen in this paper, if at least one of these numerical operations is consistent, the
overall accuracy is maintained.

– The stability properties are nearly independent of the grid types. The performance of barycentric grids
is slightly better when the size of a timestep approaches its critical value, while the performance of
the collapsed Cartesian grid is the worst due to the quadrature crimes we commit due to unresolved
differentiation of the nonlinear terms when a conservative form is used.

– Using different grids, deviation of several orders of accuracy in the error of a stable numerical solution
may occur. This happens when the size of the time step approaches its critical value in terms of stability.
Quadrature crimes we commit in differentiation and integration practically shrink the stability region.

– The collapsed Cartesian grid is overall the most efficient, particularly for high order of polynomial
expansions.
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